

Whitepaper

V1.0 FEBRUARY 2025

Contents

Introduction	 1
Background on EVM App Development	 1
The Patchwork Vision	 1

Challenges in EVM App Development	 3
App Development Complexities	 3
High Gas Fees from Inefficient Storage	 3
Challenges in Data Provenance and Ownership Tracking	 4
Lack of Seamless Onchain App Interoperability	 5

Patchwork’s Solution	 6

Core Concepts	 8
The Patchwork721 Standard	 8
Patches and Fragments	 8
Assignees and Scopes	 9
Locks and Freezes	 10

The Patchwork Stack: Simplifying App Development	 11
Base Contracts	 12
Data Modeling: Metadata Standard	 12
Defining Relationships: Patchwork Protocol	 13
Developer Tooling	 14

Example Use Cases	 18
Composable Game Items	 18
Onchain Transactions & Rewards	 18
Verified Trust Systems	 19
Soulbound Tokens	 19

Roadmap	 20

Conclusion	 21
Get Started With Patchwork	 21
Who’s Behind Patchwork	 21

Introduction

Background on EVM App
Development

Building applications (apps) on the Ethereum Virtual
Machine (EVM), such as those on networks like
Polygon or Base, requires navigating the complexities
of the EVM, a decentralized computing environment
that processes smart contracts. The EVM’s stack-
based architecture presents significant challenges for
developers, easily leading to inefficiencies, possibly
high gas fees, and lack of data provenance or
interoperability if not carefully managed.

Despite numerous Ethereum Improvement Proposals
(EIPs) that attempt to tackle these issues, many lack
cohesion, making it difficult for emerging apps to
integrate these solutions seamlessly. For example, the
ERC-721 contract facilitates unique asset creation
(NFTs), but falls short in supporting complex asset
relationships, such as associating a governance token
with multiple underlying voting rights or assets. This
pushes developers to adopt inefficient workarounds or
abandon their ideas altogether.

The Patchwork Vision Since the early days of Web3, we’ve been deeply
immersed in building and innovating, witnessing
firsthand the challenges of developing on EVM, and
over time, noticed we weren’t alone. Many other
developers abandoned projects or turned to Web2
solutions due to overwhelming complexity and
fragmented tools. This drove us to create Patchwork –
transforming the experience of building Web3 apps as
simple as describing an idea.

Imagine explaining your app and having a solution
seamlessly generate interoperable smart contracts

PATCHWORK WHITEPAPER FEB 2025 1

and backend infrastructure with data entirely onchain.
Recent advancements in Large Language Models
(LLMs) have made this kind of seamless development
feel more attainable than ever. However, while LLMs
can accelerate coding, smart contract developers
know that onchain apps demand absolute security,
with no room for unsafe or inefficient code.

Patchwork embraces automation while prioritizing
security, enabling rapid Web3 app development
without compromising reliability. By extending
ERC-721 into a new realm of dynamic, standardized
assets, the Patchwork stack empowers people to
safely streamline workflows, cutting deployment time
from months to just hours. From crypto enthusiasts
building quick, disposable mini-apps to developers
seeking a comprehensive full-stack solution for
ambitious projects, Patchwork provides the tools and
flexibility to meet a wide variety of use cases.

PATCHWORK WHITEPAPER FEB 2025 2

Challenges in EVM App Development

App Development Complexities A key component of building EVM-based apps is
creating smart contracts. Despite EVM’s popularity,
the smart contract building process is deceptively
complex . Developers must balance gas efficiency 1

with functionality, as every operation consumes gas,
which directly translates to costs. Poor optimization
can render a contract impractical or even fail to
deploy.

Mistakes in design can lead to security vulnerabilities,
such as reentrancy attacks or unintentional exploits,
making rigorous auditing essential. For instance, a
project called Wolf Game had to rebuild its entire 2

ecosystem after discovering a bug in its immutable
smart contract. These challenges are further
compounded by the lack of robust tools for managing
inter-contract relationships and metadata, often
leaving developers to devise makeshift solutions. As a
result, even seemingly simple apps can face
significant hurdles in achieving secure, efficient, and
scalable deployments.

High Gas Fees from Inefficient
Storage

Gas fees remain a fundamental challenge for EVM-
based apps, impacting both users and developers.
Every transaction incurs costs, and for apps
processing frequent or complex operations, these
fees can quickly add up. If an app relies on a
paymaster model, for example, the operator may face
substantial expenses. Alternatively, users bear the
cost, potentially limiting adoption and engagement.

 “Ethereum Virtual Machine Challenges: Tackling the Hurdles in the EVM Landscape” 1
 Jordan Adams, published on Doubloin in November 2023

 Wolf Game White Paper V2 addressing smart contract issues in November 20212

PATCHWORK WHITEPAPER FEB 2025 3

https://www.doubloin.com/learn/ethereum-virtual-machine-challenges%23
https://wolf.game/whitepapers

Optimizing storage and execution techniques is
critical to reducing these costs. Efficient onchain
storage methods, along with procedural optimizations
for nested and cascading operations, has proven to
significantly lower gas fees. Without these
improvements, apps may end up paying 10x more than
necessary in transaction costs, making economic
scaling a key consideration for any network.

Challenges in Data Provenance
and Ownership Tracking

Managing data ownership and “provenance” –
knowing where data originates and ensuring its
accuracy – presents its own set of challenges,
especially when distinguishing between onchain and
offchain data storage. Metadata, which describes
assets (e.g., attributes like color or rarity, or traits like
age or score), is often stored offchain in centralized
databases. While, as mentioned, this can optimize
costs, it also introduces trust issues, limits
transparency, and creates access barriers. Storing
metadata onchain helps eliminate these roadblocks,
providing greater transparency, integrity, and
seamless data availability.

For example, in a game, if a character and their sword
are sold, tracking their ownership history – whether
the sword is still tied to the character or owned
separately – is crucial for ensuring accurate
provenance. Storing this metadata onchain
guarantees the integrity and transparency of these
relationships, making it accessible across different
platforms. Platforms like OpenSea can also leverage
this onchain metadata to dynamically display asset
details, improving discoverability and enabling greater
interoperability. However, this approach typically
increases gas costs and requires careful design,
making onchain data management a challenging
decision in app development.

PATCHWORK WHITEPAPER FEB 2025 4

Lack of Seamless Onchain App
Interoperability

Achieving seamless interoperability, where apps can
read contracts from other apps and build on top of
them, is also a significant challenge in the EVM space.
This is largely because most apps store their
metadata offchain in order to prioritize scalability.

For instance, ERC-721 tokens are fundamentally not
interoperable because their metadata is stored
externally, making it difficult for different contracts to
access or share data. If a developer wishes to fork an
app or extend its functionality, they typically need to
rely on external sources to access the contracts and
trust that the provided code is accurate and up-to-
date. This introduces friction and potential risk, as
there is no standardized way to verify or integrate
data from one contract to another directly on-chain.

Overall, without standardized onchain metadata
schemas, interoperability among EVM-based apps will
remain a barrier to ecosystem growth and innovation.

PATCHWORK WHITEPAPER FEB 2025 5

Patchwork’s Solution

Patchwork is the ultimate framework for building rich onchain apps. It tackles the
key challenges of EVM-based app development, unifying fragmented ideas into a
cohesive ecosystem of opportunity. At its core, Patchwork combines a powerful
protocol, metadata standards, and specialized tools – all streamlining the necessary
elements for developers to build scalable and efficient apps.

How does it work?

Patchwork started off with the idea of “patching” or allowing you to permissionlessly affix, or “soulbind,” datasets
to any onchain entity or create them as standalone properties. From there, it evolved into an entire developer
stack where app data is structured with Patchwork721 contracts and tokens, which function like database tables:
contracts define schemas (columns), and tokens represent rows with unique IDs as primary keys. Seamless
protocol orchestration ensures secure, efficient, and queryable data lifecycles across the EVM, streamlining the
development of robust apps.

Key benefits

✴ Solving EVM app complexities via Automated
Smart Contract Generation
Patchwork’s rule-based Protocol enables
automatic contract generation for relational
and operational logic, eliminating the need for
developers to write extensive boilerplate code
and ensuring rapid, secure deployment.

✴ Efficient Gas Fee Management
Patchwork’s byte-packed metadata standard
ensures gas-efficient storage and querying,
allowing apps to minimize costs while
maintaining onchain integrity. While gas
remains cheap on some networks today,
Patchwork is built with the future in mind,
optimizing for a scenario where costs rise,
ensuring sustainable, low-cost scaling for
apps.

PATCHWORK WHITEPAPER FEB 2025 6

✴ Dynamic Ownership and Provenance
With support for ownership hierarchies and
dynamic metadata, Patchwork enables
seamless tracking and management of
complex asset relationships – whether it’s
linking a game character to its equipment or
validating ownership histories.

✴ Schema-Driven Interoperability
Standardized, discoverable schemas allow
apps to seamlessly share and integrate data.
This eliminates the silos that limit ecosystem
collaboration and simplifies the creation of
collaborative onchain systems and overall data
availability.

✴ Permissionless Extensibility
Developers and third parties can build on and
extend existing apps freely, fostering
innovation, decentralized collaboration, and
ecosystem growth without compromising
integrity or control.

✴ Ensuring Security
Patchwork contracts optimize for maximal
asset security, e.g., with locking and freezing
mechanisms. The Patchwork Protocol and
base contracts that the PDK use have gone
through multiple rounds of auditing by
Macro , and code libraries that are included 34

by our code are based on audited
OpenZeppelin contracts.

 Macro Patchwork security audit in 20233

 Macro Patchwork security audit in 20244

PATCHWORK WHITEPAPER FEB 2025 7

https://0xmacro.com/library/audits/patchwork-1
https://0xmacro.com/library/audits/patchwork-2

Core Concepts

The Patchwork721 Standard The Patchwork721 Standard is a core component of
Patchwork’s framework, leveraging the
IPatchworkMetadata interface to enable dynamic
interactions between assets while optimizing
efficiency, interoperability, and reducing gas fees. In
short, Patchwork721 extends the classic ERC-721
beyond a simple asset standard, unlocking new
possibilities for app use cases & data tokenization.

THE PATCHWORK721 STANDARD

Patches and Fragments Patches, a macro extension contract of
Patchwork721, are like personal annotations in a
decentralized knowledge graph. While they don’t alter
the original onchain entity - be it a contract address,
wallet, or token - they create a parallel layer of context
and functionality that can easily be discovered via the
Patchwork explorer.

PATCHWORK WHITEPAPER FEB 2025 8

Much like how indexing protocols surface hidden
metadata across Web3, Patches enable
permissionless collaboration without modifying the
original source.

Fragments, also a macro extension contract, serve as
modular building blocks within the Patchwork
ecosystem. These discrete data units can be assigned
to or unassigned from a parent Patchwork721 and
traded independently.

Ownership models of Fragments can be managed in
different ways: →

✴ Proxied (or Hierarchical) Ownership: Like having a
keyholder for a group of items, when the
keyholder (the parent) changes, the ownership of
everything tied to it changes too, without needing
to move each item individually. As an optimization,
ownerOf() is proxied so no transfers actually
happen. Patchwork instead emits cheap transfer
logs onchain so indexers and explorers are made
aware of the ownership change.

✴ Weak References: This allows Fragments to be
assigned to an entity without transferring
ownership, like selling a piece of a puzzle, but that
piece will always stay part of the puzzle.

✴ Transferability: This controls whether Fragments
can be locked, moved, or made permanent,
ensuring assets can be transferred or remain
fixed, such as for permanent onchain audit
reports.

Assignees and Scopes Assignees (LiteRefs) and Scopes work together to
enable dynamic asset management and application
organization. Assignees are specialized contracts
designed to hold and manage Fragments efficiently,
using a storage system called LiteRefs. Normally, to
uniquely address an ERC-721 token, it requires 512
bits of data: 256 bits for the address and 256 bits for
the token ID.

However, Patchwork takes a practical approach by
compressing this reference down to just 64 bits,
resulting in an 8x savings on storage. Think of an
Assignee as a backpack that organizes and carries
gear, with defined slots that hold specific Fragments.
When transferred, an Assignee moves with its entire
tree of assigned Fragments, ensuring seamless asset
portability.

PATCHWORK WHITEPAPER FEB 2025 9

Scopes, on the other hand, act as reserved
namespaces for developers, providing a foundation to
organize and govern their apps. Like owning a plot of
land, a Scope defines where app-specific rules,
permissions, and connections to protocol utilities
reside. Scopes also enable developers to accrue fees
from their contracts, offering a streamlined way to
manage dApps within the ecosystem.

Locks and Freezes Patchwork's robust security framework incorporates
two essential mechanisms for protecting asset
integrity and preventing unauthorized modifications:
locking and freezing. The locking mechanism, which
implements IERC-5192, provides transfer restrictions
by preventing token movement until explicitly
unlocked, with all state changes broadcast through
standardized Locked and Unlocked events.

Complementing this, the freezing feature allows for
programmatic freezing of assets (like owned NFTs)
using a nonce that changes every time a thaw occurs,
allowing a check for a nonce match on sale. If the
nonce does match, the token you're purchasing could
have been tampered with.

These mechanisms are particularly crucial in the
context of composable assets, where the integrity of
inter-token relationships and associated data must be
guaranteed during transfers to prevent potential "rug
pulls" or unauthorized modifications to the asset's
composition.

PATCHWORK WHITEPAPER FEB 2025 10

The Patchwork Stack: Simplifying App
Development

Building on these core technical concepts, the Patchwork Stack is a fully integrated framework, where each
component works seamlessly together to simplify efficient onchain app development.

THE PATCHWORK STACK

PATCHWORK WHITEPAPER FEB 2025 11

Base Contracts

At the very start of Patchwork is its base contracts, which define relationships, permissions, and transfer
mechanics, ensuring modular and composable interactions across apps. As mentioned in Core Concepts, all our
contracts build upon and extend the Patchwork721 standard, which serves as the fundamental primitive
throughout the ecosystem.

✴ Patchwork721
An extension of ERC-721 and the core
contract that all other Patchwork contracts
extend from.

✴ Patchwork1155Patch
Targets specific accounts or an entire token
ID.

✴ PatchworkPatch
A Patchwork721 contract that links to another
721’s address and token ID.

✴ PatchworkAccountPatch
Attaches directly to a user’s wallet address,
allowing account-level extensions.

✴ PatchworkFragmentMulti
Enables a fragment to be assigned to multiple
holders simultaneously.

✴ PatchworkFragmentSingle
Enables a fragment to be assigned to a single
holder.

Each contract type adheres to a specific Patchwork interface and can be generated through the Patchwork
Developer Kit (PDK) with corresponding configurations.

Data Modeling:
Metadata Standard

Patchwork’s Metadata Standard is the backbone of
enabling interoperability and efficient data
management across apps, defining a schema-based
system where each piece of data is organized and
stored in a format that ensures consistency. It can also
be used by apps not leveraging Patchwork to allow
their data model to be discoverable onchain via
schema().

On top of this, Patchwork automatically offers
maximal efficient layouts, with the metadata being
packed into uint256 values. This allows developers to
group frequently accessed fields into a single SSTORE
and reads into a single SLOAD, which the compiler

PATCHWORK WHITEPAPER FEB 2025 12

would not do for you when using a struct directly. For
example, instead of using separate slots for metadata
fields like ownership, attributes, and relationships,
these can be combined into a single packed slot,
saving gas per SSTORE and per SLOAD.

Orchestrated by the Patchwork Protocol and
implemented by the PDK, this system ensures
Patchwork-based apps are easily scalable and
adaptable according to the schema they put in place.

Defining Relationships:
Patchwork Protocol

The Patchwork Protocol acts as the orchestrator of
onchain metadata relationships, implementing the
core technical contracts that form the backbone of
the ecosystem. By doing so, it ensures data integrity
and rule adherence across connected entities. Think
of it as a referee in a game, making sure all teams
follow the rules and that data interactions are fair and
secure.

PATCHWORK WHITEPAPER FEB 2025 13

PATCHWORK METADATA SCHEMA

 By managing these relationships, it enables seamless,
trust-based connections between contracts, accounts,
and tokens. With the added benefits of automatic
ownership model updates, fee management, and
accounting, the Protocol simplifies complex app
development while protecting against bad actors and
ensuring reliability.

Developer Tooling

Patchwork Development Kit (PDK) The Patchwork Development Kit (PDK) empowers 5

developers to create and deploy sophisticated
onchain apps with minimal effort. Just as a well-
stocked toolkit provides all the essential tools for
assembling something, the PDK bridges the gap
between concept and execution. Developers simply
define their app's requirements in a configuration file,
and the PDK generates contracts tailored to those
needs.

 PDK: https://docs.patchwork.dev/pdk/overview 5

PATCHWORK WHITEPAPER FEB 2025 14

PATCHWORK PROTOCOL ARCHITECTURE

https://docs.patchwork.dev/pdk/overview

The kit supports various configurations, including
complex metadata fields, relational data structures,
and application-specific logic. Beyond generating
contracts, the PDK can also produce backend setups
for tools like Ponder, enabling developers to go from
configuration to a running app seamlessly.

PDK Workflow

1. Define Configuration
Developers outline their contract requirements
in a typescript file, specifying features,
metadata fields, and relationships.

2. Generate Contracts
The PDK converts the configuration into
solidity contracts, reflecting the specified
parameters.

3. Customize Logic
The generated contract can be further refined
with application-specific logic for unique use
cases.

4. Deploy to Blockchain
The finalized contract can be deployed to any
EVM-compatible blockchain where the
Patchwork Protocol operates.

5. Interact via PDK
Developers use PDK-generated functions to
interact with the contract, integrating
seamlessly with the broader Patchwork
ecosystem and easily discoverable via the
Explorer.

PATCHWORK WHITEPAPER FEB 2025 15

EXAMPLE PATCHWORK CONFIGURATION

PATCHWORK WHITEPAPER FEB 2025 16

import { ContractConfig, Feature, FunctionConfig, ProjectConfig } from "@patchworkdev/common/types";

const myConfig: ProjectConfig = {
 name: "Contract Config Project",
 scopes: [
 {
 name: "test",
 owner: "0x222222cf1046e68e36E1aA2E0E07105eDDD1f08E",
 whitelist: true,
 userAssign: false,
 userPatch: false,
 bankers: ["0x000000254729296a45a3885639AC7E10F9d54979", "Contract1"],
 operators: ["0x000000111129296a45a3885639AC7E10F9d54979", "Contract1"],
 }
],
 contracts: {
 "Contract1": {
 scopeName: "test",
 name: "AccountPatch",
 symbol: "AP",
 baseURI: "https://mything/my/",
 schemaURI: "https://mything/my-metadata.json",
 imageURI: "https://mything/my/{tokenID}.png",
 fields: [
 {
 id: 1,
 key: "name",
 type: "char32",
 description: "Name",
 functionConfig: FunctionConfig.ALL,
 },
 {
 id: 2,
 key: "patches",
 type: "literef",
 description: "Contract2",
 arrayLength: 4,
 }
],
 features: [Feature.ACCOUNTPATCH],
 fragments: ["Contract2"]
 },
 "Contract2": {
 scopeName: "test",
 name: "SecondContract",
 symbol: "SC",
 baseURI: "https://mysecondthing/my/",
 schemaURI: "https://mysecondthing/my-metadata.json",
 imageURI: "https://mysecondthing/my/{tokenID}.png",
 fields: [
 {
 id: 1,
 key: "description",
 type: "char32",
 description: "Description",
 functionConfig: FunctionConfig.ALL,
 }
],
 features: [Feature.PATCH, Feature.FRAGMENTSINGLE],
 fragments: []
 }
 },
 plugins: [{ name: "ponder" },{ name: "react" }],
};

export default myConfig;

Create-Patchwork

To further streamline and speed up the setup process
for Patchwork-based projects, the Create-Patchwork 6

CLI automates key tasks, serving as a primary entry
point for developers. Leveraging the PDK, the tool
generates all necessary code, orchestrating backend
services and frontend integrations from a single
configuration. This includes smart contract
generation, backend setup, and the configuration of
services such as Docker containers and other
essential components.

The CLI tool also includes built-in support for Ponder
(event indexing), a preconfigured web3-ready React
frontend (with TailwindCSS and RainbowKit), and
PostgreSQL for data persistence, delivering a fully-
configured development environment. By automating
the generation of smart contracts, deploy scripts,
APIs, and React hooks, it accelerates the
development process and eliminates the need for
manual configuration.

Patchwork Wizard

Developers can also experiment with Patchwork and
its PDK directly by using the Patchwork Wizard . With 7

text-to-config implemented, simply provide a text
description of your app’s schema, and the Wizard will
generate the smart contracts in real time,
automatically integrating them into Create-Patchwork
to kickstart your app development.

Patchwork Explorer

Finally, there’s the Patchwork Explorer . This is the 8

gateway to the Patchwork ecosystem, providing a
clear view of the different apps, contracts, and
interactions within the network, making it easy to
discover, analyze, and track onchain activity.

At the time of publishing, Explorer indexes 12 apps
and 90 contracts across Base mainnet and testnet,
displaying key stats such as mints, unique addresses,
assignments, data rows, and interactions. As the
Patchwork ecosystem grows, Explorer will continue to
evolve as a hub for exploring composable onchain
apps and their respective data.

 create-patchwork: https://docs.patchwork.dev/pdk/getting-started 6

 Patchwork Wizard: https://wizard.patchwork.dev 7

 Patchwork Explorer: https://explorer.patchwork.dev 8

PATCHWORK WHITEPAPER FEB 2025 17

https://docs.patchwork.dev/pdk/getting-started
https://wizard.patchwork.dev
https://explorer.patchwork.dev

Example Use Cases

Composable Game Items When you're playing a game and your character owns
a sword, what happens to the sword if you sell the
character? Patchwork unlocks new possibilities for
Web3 game development by enabling modular and
interconnected game assets.

Imagine creating a game where characters own armor,
trophies, or pets that can be traded, upgraded, or
soulbound. Patchwork’s hierarchical ownership model
ensures that when a player sells a character, linked
items like swords automatically transfer ownership,
while soulbound items, such as pets, remain attached.
Developers can easily define these relationships using
Patchwork’s schema-based tools.

This approach reduces development complexity by
providing a unified framework for managing modular
assets. It also enhances player experience by
streamlining asset interoperability and enabling
seamless trading across games. Compared to
traditional methods, Patchwork accelerates
development and fosters innovation, allowing
developers to focus on creating engaging gameplay.

Onchain Transactions &
Rewards

Managing complex, interdependent data onchain
becomes straightforward with Patchwork. For
example, in e-commerce, Patchwork can attach
receipts as onchain metadata to user accounts,
ensuring tamper-proof, transparent, and updatable
transaction histories. This eliminates concerns about
data integrity and simplifies backend workflows.

Similarly, in event ticketing, Patchwork resolves
challenges like verifying ticket authenticity and
enabling resales by linking tickets to their

PATCHWORK WHITEPAPER FEB 2025 18

corresponding events. For schools, Patchwork’s
dynamic data management supports use cases like
real-time updates to student attendance and grades
across multiple classes.

By offering a composable design, Patchwork turns
intricate data relationships into scalable, efficient
solutions, enabling developers to build reliable apps
with ease while ensuring transparency and trust for
end-users.

Verified Trust Systems

Speaking of trust, it’s a cornerstone of Web3, yet
building reliable trust mechanisms often involves
fragmented or inefficient solutions. Patchwork
addresses this challenge by enabling dynamic,
onchain trust systems that are transparent,
interoperable, and immutable.

For example, in smart contract auditing, developers
can use Patchwork to attach signed audit records
directly to contracts as metadata. These records
provide a tamper-proof verification trail, enabling
programmatic trust mechanisms such as restricting
unverified contracts from critical operations. Unlike
offchain alternatives, Patchwork’s approach ensures
universal accessibility and immutability.

Patchwork also empowers ID verification systems by
allowing users to attach KYC attestations to their
accounts. With built-in features for updates and
revocation, developers can maintain compliance while
preserving data sovereignty. These capabilities
elevate trust and transparency across diverse Web3
apps.

Soulbound Tokens

Patchwork’s soulbound tokens redefine how
developers create permanent, non-transferable
connections between onchain assets, accounts, and
metadata. For instance, proof of participation badges
issued to DAO voters or hackathon attendees can
serve as immutable records of involvement.
Contributor rewards tied directly to Ethereum
accounts ensure that recognition reflects genuine
contributions rather than being sold on secondary
markets.

Unlike traditional NFTs, Patchwork enforces
immutability at the contract level, ensuring soulbound
tokens cannot be transferred or removed once
assigned. This feature simplifies the creation of apps
for reputation, certification, and recognition, offering
a secure and transparent way to establish trust and
authenticity. Developers can leverage this
functionality to build innovative systems for verifying
achievements, issuing credentials, and fostering long-
term user engagement.

PATCHWORK WHITEPAPER FEB 2025 19

Roadmap

With Patchwork’s foundation firmly established – featuring a robust Protocol,
PDK, the interactive Wizard, and Explorer – the platform is prepared to take EVM
app development to the next level.

The next step is realizing Patchwork’s ultimate vision: transitioning from low-code
to no-code. This means enabling anyone to simply describe their app, and
Patchwork laying the foundation to seamlessly generate fully interoperable smart
contracts and backend infrastructure entirely onchain – ready to deploy. Like
Wordpress for apps.

To achieve this, upcoming advancements like analytics, cross-app discovery, and
distribution tools will expand capabilities. The community has already been a key
driver in Patchwork's development, and future plans include fostering more
interaction and building on Patchwork community ideas. Looking further ahead,
Patchwork looks forward to driving a vibrant ecosystem with token-based
rewards, fee-sharing models, and a dynamic portal for app discovery and inter-
app engagement.

PATCHWORK WHITEPAPER FEB 2025 20

Conclusion

Get Started With Patchwork

Patchwork revolutionizes the way developers build EVM-based apps, offering a powerful, flexible solution that
streamlines complex data management, reduces operational costs, and unlocks the full potential of all kinds of
Web3 apps to build and interact with each other.

Whether you’re building your first EVM-based app or advancing an existing project, Patchwork is your best toolkit.
Start building with Patchwork today and easily turn your vision into reality: https://docs.patchwork.dev/protocol/
getting-started/101

Who’s Behind Patchwork

Patchwork was created by the team behind Paradex, one of the first decentralized exchanges (DEXs) in the crypto
space, which was acquired by Coinbase in 2018. Following the acquisition, we worked on integrating decentralized
features into Coinbase, blending innovation with scalability. Our team – including Kevin Day, Rob Green, Brock
Petrie, and Don MacLellan – brings a wealth of expertise across backend and frontend engineering, game design,
and the development of decentralized financial models.

Patchwork is funded by leading investors, including Base Ecosystem Fund and IDEO Ventures, a globally
respected design and innovation firm. Patchwork also is being advised by Ron Bernstein who previously founded
AugmentPartners, a software development company dedicated to applying decentralized protocols to real-world
financial systems. Ron also led Periscope Trading, a specialized division of 0x Lab. This backing highlights both
the technical credibility and creative potential of the Patchwork vision.

Disclaimer

While the Patchwork Protocol and base contract code were audited and generated code is generally reliable,
publishers are ultimately responsible for conducting independent audits to address any security concerns. As
Patchwork continues to evolve, please be aware that the generated code is regularly updated.

PATCHWORK WHITEPAPER FEB 2025 21

https://docs.patchwork.dev/protocol/getting-started/101
https://docs.patchwork.dev/protocol/getting-started/101
https://github.com/kevinday
https://github.com/robdoesstuff
https://github.com/brockpetrie
https://github.com/brockpetrie
https://github.com/donaldinho
https://www.base.org/
https://ventures.ideo.com/
https://www.linkedin.com/in/ronbernstein/

	Contents
	Introduction
	Background on EVM App Development
	The Patchwork Vision

	Challenges in EVM App Development
	App Development Complexities
	High Gas Fees from Inefficient Storage
	Challenges in Data Provenance and Ownership Tracking
	Lack of Seamless Onchain App Interoperability

	Patchwork’s Solution
	How does it work?
	Key benefits

	Core Concepts
	The Patchwork721 Standard
	Patches and Fragments
	Assignees and Scopes
	Locks and Freezes

	The Patchwork Stack: Simplifying App Development
	Base Contracts
	Data Modeling: Metadata Standard
	Defining Relationships: Patchwork Protocol
	Developer Tooling
	Patchwork Development Kit (PDK)
	PDK Workflow
	Create-Patchwork
	Patchwork Wizard
	Patchwork Explorer

	Example Use Cases
	Composable Game Items
	Onchain Transactions & Rewards
	Verified Trust Systems
	Soulbound Tokens

	Roadmap
	Conclusion
	Get Started With Patchwork
	Who’s Behind Patchwork
	Disclaimer

